
Java Struts Tutorial

From:

http://www.netbeans.org/kb/61/web/quickstart-webapps-struts.html

Introduction to the Struts Web Framework

This document takes you through the basics of using NetBeans IDE to develop web applications

using the Struts web framework. Struts is an open source framework that extends the Java Servlet

API and employs a Model, View, Controller (MVC) architecture. It enables you to create

maintainable, extensible, and flexible web applications based on standard technologies, such as JSP

pages, JavaBeans, resource bundles, and XML.

This tutorial teaches you how to build a simple MVC application that displays a login page and

returns a success page upon submitting data that passes validation. You learn several basic features

provided by Struts, as well as how these features are implemented using the IDE. Specifically, you

use Struts tags in JSP pages, maintain user data with a Struts ActionForm bean, and implement

forwarding logic using a Struts Action object. You are also shown how to implement simple

validation to your application, including setting up warning message for a failed login attempt.

For a more fine-grained introduction to Struts, see How does Struts work? on the official Struts

website. Also, make use of the IDE's Javadoc Index Search (Help > Javadoc Index Search) to view

the Struts Framework API, which is packaged with the Struts libraries.

Note: If you are looking for Struts 2 framework support in NetBeans IDE, you should consider

installing the NetBeans Struts 2 support plugin.

Contents

• Overview of the Application

• Setting Up a Struts Application

• Creating JSP Pages

o Creating a Login Page

o Creating a Success Page

• Creating an ActionForm Bean

• Creating an Action Class

• Implementing Validation

o Accessing Bean Data and Preparing a Forwarding Condition

o Setting Up an Error Message

• Adding forward Entries to struts-config.xml

• Configuring and Running the Application

o Setting the Welcome Page

o Attaching a Stylesheet

o Running the Application

• See Also

To complete this tutorial, you need the following software and resources.

Software or Resource Version Required

NetBeans IDE version 6.x Java

Java Development Kit (JDK) version 5 or 6

GlassFish application server

or

Tomcat servlet container

V2 or V3

version 6.x

Notes:

• The Web and Java EE installation enables you to optionally install the GlassFish (V2 or V3)

application server and the Apache Tomcat servlet container 6.0.18. You must install one of these (or

register a different server in the IDE) to work through this tutorial.

• If you need to compare your project with a working solution, you can download the sample

application.

Overview of the Application

When you use Struts, the framework provides you with a controller servlet, ActionServlet, which

is defined in the Struts libraries that are included in the IDE, and which is automatically registered

in the web.xml deployment descriptor as shown below. The controller servlet uses a struts-

config.xml file to map incoming requests to Struts Action objects, and instantiate any

ActionForm objects associated with the action to temporarily store form data. The Action object

processes requests using its execute method, while making use of any data stored in the form

bean. Once the Action object processes a request, it stores any new data (i.e., in the form bean,

or in a separate result bean), and forwards the results to the appropriate view.

Developing a Struts application is similar to developing any other kind of web application in

NetBeans IDE. However, you complement your web development toolkit by taking advantage of the

Struts support provided by the IDE. For example, you use templates in the IDE to create Struts

Action objects and ActionForm beans. Upon creation, the IDE automatically registers these

classes in the struts-config.xml file and lets you extend this file very easily using menu items

in the Source Editor's right-click menu. Because many web applications use JSP pages for the view,

Struts also provides custom tag libraries which facilitate interaction with HTML forms. Within the

IDE's Source Editor, you can invoke code completion and Javadoc support that helps you to work

efficiently with these libraries.

The following steps demonstrate how to create a simple form that collects user data, performs

simple validation, and outputs the data on a success page.

Setting Up a Struts Application

In the IDE, a Struts application is nothing more than a normal web application accompanied by the

Struts libraries and configuration files. You create a Struts application in the same way as you

create any other web application in the IDE - using the New Web Application wizard, with the

additional step of indicating that you want the Struts libraries and configuration files to be included

in your application.

1. Choose File > New Project. Under Categories, select Web. Under Projects, select Web

Application and click Next.

2. In the Name and Location panel, enter MyStrutsApp for Project Name and click Next.

3. In the Server and Settings panel, select the server to which you want to deploy your

application. Only servers that are registered with the IDE are listed. (To register a server,

click Add next to the Server drop-down list.) Also, note that the Context Path to your

deployed application becomes /MyStrutsApp. Click Next.

4. In the Frameworks panel, select Struts:

For purposes of this tutorial, do not change any of the configuration values in the lower

region of this panel. These are the following:

o Action Servlet Name: The name of the Struts action servlet used in the

application. The web.xml deployment descriptor contains an entry for the action servlet

and specifies the appropriate Struts-specific parameters, such as the path to the servlet

class within the Struts library and to the struts-config.xml configuration file within the

application.

o Action URL Pattern: Specifies the patterns of incoming requests which are

mapped to the Struts action controller. This generates a mapping entry in the deployment

descriptor. By default, only the *.do pattern is mapped.

o Application Resource: Lets you specify the resource bundle which will be used in

the struts-config.xml file for localizing messages. By default, this is

com.myapp.struts.ApplicationResource.

o Add Struts TLDs: Lets you generate tag library descriptors for the Struts tag

libraries. A tag library descriptor is an XML document which contains additional information

about the entire tag library as well as each individual tag. In general this is not necessary,

because you can refer to on-line URIs rather than local TLD files.

5. Click Finish. The IDE creates the project folder in your file system. As with any web

application in the IDE, the project folder contains all of your sources and the IDE's project

metadata, such as the Ant build script. However, your web application in addition has all of

the Struts libraries on its classpath. Not only are they on the application's classpath, but

they are included in the project and will be packaged with it later when you build the

project.

The project opens in the IDE. You can view its logical structure in the Projects window and its file

structure in the Files window. For example, in the Projects window note that your project appears as

follows:

The Struts-specific configuration files, as well as the application's deployment descriptor, are

conveniently placed within the Configuration Files folder. Open the deployment descriptor (double-

click the web.xml file node to have it display in the Source Editor). In order to handle Struts

processing, a mapping is provided for the Struts controller servlet:

<servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

 <init-param>

 <param-name>config</param-name>

 <param-value>/WEB-INF/struts-config.xml</param-value>

 </init-param>

 <init-param>

 <param-name>debug</param-name>

 <param-value>2</param-value>

 </init-param>

 <init-param>

 <param-name>detail</param-name>

 <param-value>2</param-value>

 </init-param>

 <load-on-startup>2</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>action</servlet-name>

 <url-pattern>*.do</url-pattern>

</servlet-mapping>

Above, the Struts controller servlet is named action and is defined in the Struts library

(org.apache.struts.action.ActionServlet). It is set to handle all requests that satisfy the

*.do mapping. In addition, initialization parameters for the servlet are specified by means of the

struts-config.xml file, also contained in the WEB-INF folder.

Creating JSP Pages

Begin by creating two JSP pages for the application. The first displays a form. The second is the

view returned when login is successful.

• Creating a Login Page

• Creating a Success Page

Creating a Login Page

1. Right-click the MyStrutsApp project node, choose New > JSP, and name the new file

login. Click Finish. The login.jsp file opens in the Source Editor.

2. In the Source Editor, change the content of both the <title> and <h1> tags (or <h2>

tags, depending on the IDE version you are using) to Login Form.

3. Add the following two taglib directives to the top of the file:

4. <%@ taglib uri="http://jakarta.apache.org/struts/tags-bean"

prefix="bean" %>

<%@ taglib uri="http://jakarta.apache.org/struts/tags-html"

prefix="html" %>

Many web applications use JSP pages for views in the MVC paradigm, so Struts provides

custom tag libraries which facilitate interaction with HTML forms. These can be easily

applied to a JSP file using the IDE's support for code completion. When you type in the

Source Editor, the IDE provides you with code completion for Struts tags, as well as the

Struts Javadoc. You can also invoke code completion manually by pressing Ctrl-Space:

The bean taglib provides you with numerous tags that are helpful when associating a form

bean (i.e., an ActionForm bean) with the data collected from the form. The html taglib

offers an interface between the view and other components necessary to a web application.

For example, below you replace common html form tags with Struts' <html:form> tags.

One benefit this provides is that it causes the server to locate or create a bean object that

corresponds to the value provided for html:form's action element.

5. Below the <h1> (or <h2>) tags, add the following:

6. <html:form action="/login">

7.

8. <html:submit value="Login" />

9.

</html:form>

Whenever you finish typing in the Source Editor, you can tidy up the code by right-clicking

and choosing Format (Alt-Shift-F; Ctrl-Shift-F on Mac).

10. In the Palette (Window > Palette) in the right region of the IDE, drag a Table item from the

HTML category to a point just above the <html:submit value="Login" /> line. The

Insert Table dialog box displays. Set the rows to 3, columns to 2, and leave all other

settings at 0. Later in the tutorial, you will attach a stylesheet to affect the table display.

Click OK, then optionally reformat the code (Alt-Shift-F; Ctrl-Shift-F on Mac). The form in

login.jsp now looks as follows:

11. <html:form action="/login">

12. <table border="0">

13. <thead>

14. <tr>

15. <th></th>

16. <th></th>

17. </tr>

18. </thead>

19. <tbody>

20. <tr>

21. <td></td>

22. <td></td>

23. </tr>

24. <tr>

25. <td></td>

26. <td></td>

27. </tr>

28. <tr>

29. <td></td>

30. <td></td>

31. </tr>

32. </tbody>

33. </table>

34.

35. <html:submit value="Login" />

36.

</html:form>

Note: You can safely delete the <thead> table row, as it is not used in this tutorial.

37. In the first table row, enter the following (changes in bold):

38. <tr>

39. <td>Enter your name:</td>

40. <td><html:text property="name" /></td>

</tr>

41. In the second table row, enter the following (changes in bold):

42. <tr>

43. <td>Enter your email:</td>

44. <td><html:text property="email" /></td>

</tr>

The html:text element enables you to match the input fields from the form with

properties in the form bean that will be created in the next step. So for example, the value

of property must match a field declared in the form bean associated with this form.

45. Move the <html:submit value="Login" /> element into the second column of the third table

row, so that the third table row appears as follows (changes in bold):

46. <tr>

47. <td></td>

48. <td><html:submit value="Login" /></td>

</tr>

Creating a Success Page

1. Right-click the MyStrutsApp project node, choose New > JSP, and name the new file

success. In the Folder field, click the adjacent Browse button and select WEB-INF from

the dialog that displays. Click Select Folder to enter WEB-INF in the Folder field. Any files

contained in the WEB-INF folder are not directly accessible to client requests. In order for

success.jsp to be properly displayed, it must contain processed data. Click Finish.

2. In the Source Editor, change the content of the newly created page to the following:

3. <head>

4. <meta http-equiv="Content-Type" content="text/html;

charset=UTF-8">

5. <title>Login Success</title>

6. </head>

7. <body>

8. <h1>Congratulations!</h1>

9.

10. <p>You have successfully logged in.</p>

11.

12. <p>Your name is: .</p>

13.

14. <p>Your email address is: .</p>

</body>

15. Add a bean taglib directive to the top of the file:

16. <%@ taglib uri="http://jakarta.apache.org/struts/tags-bean"

prefix="bean" %>

17. Add the following <bean:write> tags (changes in bold):

18. <p>Your name is: <bean:write name="LoginForm" property="name"

/>.</p>

19.

20. <p>Your email address is: <bean:write name="LoginForm"

property="email" />.</p>

By employing the <bean:write> tags, you make use of the bean taglib to locate the

ActionForm bean you previously created, and display the user data saved for name and

email.

Creating an ActionForm Bean

A Struts ActionForm bean is used to persist data between requests. For example, if a user submits

a form, the data is temporarily stored in the form bean so that it can either be redisplayed in the

form page (if the data is in an invalid format or if login fails) or displayed in a login success page (if

data passes validation).

1. Right-click the MyStrutsApp project node and choose New > Other. Under Categories

choose Struts, then under File Types choose Struts ActionForm Bean. Click Next.

2. Type in LoginForm for the Class Name. Then select com.myapp.struts in the Package

drop-down list and click Finish.

The IDE creates the ActionForm bean and opens it in the Source Editor. By default, the

IDE provides it with a String called name and an int called number. Both fields have

accessor methods defined for them. Also, the IDE adds a bean declaration to the struts-

config.xml file. If you open the struts-config.xml file in the Source Editor, you can

see the following declaration, which was added by the wizard:

3. <form-beans>

4. <form-bean name="LoginForm" type="com.myapp.struts.LoginForm"

/>

5. </form-beans>

The IDE provides navigation support in the struts-config.xml file. Hold down the Ctrl

key (� key on Mac) and hover your mouse over the ActionForm bean's fully qualified

class name. The name becomes a link, enabling you to navigate directly to the class in the

Source Editor:

6. In the ActionForm bean in the Source Editor, create fields and accompanying accessor

methods that correspond to the name and email text input fields that you created in

login.jsp. Because name has already been created in the ActionForm skeleton, you

only need to implement email.

Add the following declaration beneath name (changes in bold):

7. private String name;

private String email;

To create accessor methods, place your cursor on email and press Alt-Insert (Ctrl-I on

Mac).

Select Getter and Setter, then in the dialog that displays, select email : String and

click Generate. Accessor methods are generated for the email field.

Note: You can delete the declaration and accessor methods for number, as it is not used in

this tutorial.

Creating an Action Class

The Action class contains the business logic in the application. When form data is received, it is

the execute method of an Action object that processes the data and determines which view to

forward the processed data to. Because the Action class is integral to the Struts framework,

NetBeans IDE provides you with a wizard.

1. In the Projects window, right-click the MyStrutsApp project node and choose New >

Other. From the Struts category choose Struts Action and click Next.

2. In the Name and Location panel, change the name to LoginAction.

3. Select com.myapp.struts in the Package drop-down list.

4. Type /login in Action Path. This value must match the value you set for the action

attribute of the <html:form> tags in login.jsp. Make sure settings appear as in the

screenshot below, then click Next.

5. In the third step of the wizard, you are given the opportunity to associate the Action class

with a form bean. Notice that the LoginForm bean you previously created is listed as an

option for ActionForm Bean Name. Make the following adjustments to the panel:

o Delete the forward slash for the Input Resource field

o Set Scope to Request (Session is the default scope setting in Struts.)

o Deselect the Validate ActionForm Bean option

Click Finish. The LoginAction class is generated, and the file opens in the Source Editor.

Also note that the following action entry is added to the struts-config.xml file:

<action-mappings>

 <action name="LoginForm"

 path="/login"

 scope="request"

 type="com.myapp.struts.LoginAction"/>

 validate="false"

 ...

The name and scope attributes apply to the form bean that is associated with the action.

Specifically, when an incoming request matches /login, the Struts framework

automatically instantiates a LoginForm object and populates it with the form data sent in

the request. The default value of validate is set to true. This tells the framework to call

the validate method of the form bean. You deselected this option in the wizard however

because you will hand-code simple validation in the next step, which does not require the

validate method.

Implementing Validation

In the Source Editor, browse through the LoginAction class and look at the execute method:

public ActionForward execute(ActionMapping mapping, ActionForm form,

 HttpServletRequest request, HttpServletResponse response)

 throws Exception {

 return mapping.findForward(SUCCESS);}

Notice the definition of SUCCESS, listed beneath the LoginAction class declaration:

private final static String SUCCESS = "success";

Currently, the mapping.findForward method is set to unconditionally forward any request to an

output view called success. This is not really desirable; you want to first perform some sort of

validation on the incoming data to determine whether to send the success view, or any different

view.

• Accessing Bean Data and Preparing a Forwarding Condition

• Setting Up an Error Message

Accessing Bean Data and Preparing a Forwarding Condition
1. Type in the following code beneath the execute method's declaration:

2. // extract user data

3. LoginForm formBean = (LoginForm)form;

4. String name = formBean.getName();

5. String email = formBean.getEmail();

In order to use the incoming form data, you need to take execute's ActionForm

argument and cast it as LoginForm, then apply the getter methods that you created

earlier.

6. Type in the following conditional clause to perform validation on the incoming data:

7. // perform validation

8. if ((name == null) || // name parameter does not exist

9. email == null || // email parameter does not exist

10. name.equals("") || // name parameter is empty

11. email.indexOf("@") == -1) { // email lacks '@'

12.

13. return mapping.findForward(FAILURE);

14. }

15. Add a definition for FAILURE (changes in bold):

16. private final static String SUCCESS = "success";

17. private final static String FAILURE = "failure";

Using the above logic, the execute method forwards the request to the success view if the user

provides an entry for both name and email fields, and the email entered contains an '@' sign.

Otherwise, the failure view is forwarded. As is demonstrated below in Adding forward Entries to

struts-config.xml, you can set the failure view to point back to the form page, so that the

user has another chance to enter data in the correct format.

Setting Up an Error Message
If the login form is returned, it would be good to inform the user that validation failed. You can

accomplish this by adding an error field in the form bean, and an appropriate <bean:write> tag

to the form in login.jsp. Finally, in the Action object, set the error message to be displayed in

the event that the failure view is chosen.

1. Open LoginForm and add an error field to the class:

2. // error message

3. private String error;

4. Add a getter method and a setter method for error, as demonstrated above.

5. Modify the setter method so that it appears as follows:

6. public void setError() {

7. this.error =

8. "Please provide valid entries for

both fields";

9. }

10. Open login.jsp and make the following changes:

11. <html:form action="/login">

12. <table border="0">

13. <tbody>

14. <tr>

15. <td colspan="2">

16. <bean:write name="LoginForm" property="error"

filter="false"/>

17. </td>

18. </tr>

19. <tr>

20. <td>Enter your name:</td>

21. <td><html:text property="name" /></td>

22. </tr>

23. In LoginAction, within the if conditional clause, add a statement to set the error

message before forwarding the failure condition (changes in bold):

24. if ((name == null) || // name parameter does not exist

25. email == null || // email parameter does not exist

26. name.equals("") || // name parameter is empty

27. email.indexOf("@") == -1) { // email lacks '@'

28.

29. formBean.setError();

30. return mapping.findForward(FAILURE);

31. }

Your completed LoginAction class should now appear as follows:

public class LoginAction extends org.apache.struts.action.Action {

 private final static String SUCCESS = "success";

 private final static String FAILURE = "failure";

 public ActionForward execute(ActionMapping mapping, ActionForm form,

 HttpServletRequest request, HttpServletResponse response)

 throws Exception {

 // extract user data

 LoginForm formBean = (LoginForm)form;

 String name = formBean.getName();

 String email = formBean.getEmail();

 // perform validation

 if ((name == null) || // name parameter does not exist

 email == null || // email parameter does not exist

 name.equals("") || // name parameter is empty

 email.indexOf("@") == -1) { // email lacks '@'

 formBean.setError();

 return mapping.findForward(FAILURE);

 }

 return mapping.findForward(SUCCESS);

 }

}

Adding forward Entries to struts-config.xml

In order for the application to match JSP pages with forwarding conditions returned by

LoginAction's execute method, you need to add forward entries to the struts-config.xml

file.

1. Open struts-config.xml in the Source Editor, right-click anywhere in the action entry

for LoginForm, and choose Struts > Add Forward. The Add Forward dialog box opens.

Type success in Forward Name. Enter the path to success.jsp in the Resource File field

(i.e., /WEB-INF/success.jsp). The dialog box should now look as follows:

Click Add. Note that the following forward entry was added to struts-config.xml

(changes in bold):

2. <action name="LoginForm"

3. path="/login"

4. scope="request"

5. type="com.myapp.struts.LoginAction">

6. <forward name="success" path="/WEB-INF/success.jsp"/>

7. </action>

8. Perform the same action to add a forward entry for failure. Set the path to

/login.jsp. The following forward entry is added to struts-config.xml (changes in

bold):

9. <forward name="success" path="/WEB-INF/success.jsp"/>

10. <forward name="failure" path="/login.jsp"/>

Configuring and Running the Application

The IDE uses an Ant build script to build and run your web application. The IDE generated the build

script when you created the project, basing it on the options you entered in the New Project wizard.

Before you build and run the application, you need to set the application's default entry point to

login.jsp. Optionally, you can also add a simple stylesheet to the project.

• Setting the Welcome Page

• Attaching a Stylesheet

• Running the Application

Setting the Welcome Page

1. In the Projects window, double-click the web.xml deployment descriptor. The tabs listed

along the top of the Source Editor provide you with an interface to the web.xml file. Click

on the Pages tab. In the Welcome Files field, enter login.jsp.

Now click on the XML tab to view the file. Note that login.jsp is now listed in the

welcome-file entry:

2. <welcome-file>login.jsp</welcome-file>

Attaching a Stylesheet

1. Add a simple stylesheet to the project. One easy way to do this is by saving this sample

stylesheet to your computer. Copy the file (Ctrl-C; �-C on Mac), then in the IDE, select the

Web Pages node in the Projects window and press Ctrl-V; �-V on Mac). The file is added to

your project.

2. Link the stylesheet to your JSP pages by adding a reference between the <head> tags of

both login.jsp and success.jsp:

3. <link rel="stylesheet" type="text/css" href="stylesheet.css">

Running the Application

1. In the Projects window, right-click the project node and choose Run. The IDE builds the

web application and deploys it, using the server you specified when creating the project.

The browser opens and displays the login.jsp page. Type in some data that should fail

validation, i.e., either leave either field blank, or enter an email address with a missing '@'

sign:

When you click Login, the login form page redisplays, containing an error message:

Try entering data that should pass validation. Upon clicking Login, you are presented with

the success page:

Send Us Your Feedback

